Summary of Chapter 2

The von Mangoldt function, Λ, is introduced as the coefficients in the Dirichlet series for $-\zeta^{\prime}(s) / \zeta(s)$. Its fundamental property is that

$$
\sum_{d \mid n} \Lambda(d)=\log n
$$

for all $n \geq 1$.
By looking at Euler products it is shown that Λ is non-zero only on prime powers so we define $\psi(x)=\sum_{n \leq x} \Lambda(n)$ as well as $\pi(x)=\sum_{p \leq x} 1$.

Importantly we prove Chebyshev's results that

$$
a x<\psi(x)<b x \quad \text { and } \quad \frac{a x}{\log x}<\pi(x)<\frac{b x}{\log x}
$$

for any $a<\log 2, b>2 \log 2$, with x sufficiently large.
The fundamental technique of Partial Summation is introduced. This allows the removal or introduction of weights into sums. As an example it is used to prove Merten's result

$$
\sum_{p \leq x} \frac{1}{p}=\log \log x+O(1)
$$

which improves a lower bound result of the same form given in Chapter 1.
Finally the Prime Number Theorem in the form

$$
\pi(x) \sim \frac{x}{\log x}
$$

is discussed. It is shown that it is equivalent to $\psi(x) \sim x$.

